产品
产品
文章
订单热线
400-6966-012
网站首页
无机纳米
零维材料
纳米粉体
纳米团簇
纳米颗粒
富勒烯
beplay888备用网址
纳米管
纳米线
金属纳米材料
功能纳米材料
二维材料
常规二维纳米
石墨烯
二维过渡金属碳氮化物MXenes-Max
二维晶体
beplay安全
钙钛矿
CVD生长材料
功能二维材料
基片材料
beplay888官网
beplay888体育
多孔材料
纳米阵列
特殊材料
特殊合成
离子液体
固相合成
媒介导合成
氟合成
造影产品
同位素
T1T2造影剂
氘代试剂和原料
药物递送
脂质体
水凝胶
PS微球或其他
白蛋白纳米粒
磷脂
超分子材料
纳米金
纳米银
磁性纳米颗粒
二氧化硅/介孔硅
同位素标记
同位素原料
同位素标记药物
同位素标记产品
电子化学品
有机光电
掺杂材料
主客体材料
空穴电子注入材料
中间体
电子材料
金刚烷衍生物
降冰片
生物墨水
光电中间体
化学中间体
功能化玻璃片材料
金属与陶瓷
稀土贵金属有机催化剂
贵金属复合物
贵金属载体催化剂
金属靶材/溅射靶材
贵金属靶材
非金属靶材
纯金属蒸发材料
合金蒸发材料
化合物蒸发材料
陶瓷
常规陶瓷产品
功能化学
有机化学
高分子材料
PEG衍生物
共聚物
树枝星型聚合物
POSS笼型聚倍半硅氧烷
响应型聚合物
PDMS
活性氧
原料药
缓聚剂
原料药
医药中间体
APIs
药用小分子
其他类药物
活性分子
天然产物
其他化学品
杂环
噻吩
吡啶
嘧啶
哌啶
喹啉
噻唑
哌嗪
咪唑
染色剂和染料
常规染色剂
植物提取物
常规植物提取物
药用植物提取物
氟试剂
含氟材料原料
氟化试剂
含氟试剂
含氟气体
含氟砌块
膦配体
基础膦配体
手性单膦配体
手性双膦配体
发光材料
常规荧光染料
FITC/罗丹明基础染料
CY系列
BDP系列
香豆素系列
ATTO系列
Pyrene系列
光敏剂
近红外I区II区
物
糖
蛋白
药物小分子
生物荧光探针
离子探针
荧光探针
酶荧光底物
细胞膜染色
生物发光
荧光试剂盒
标记核酸
功能性发光材料
聚集诱导发光
光致变色材料
光引发剂
光刻胶系列
无机发光材料
荧光量子点
上转换纳米颗粒
功能性化学
Linker交联剂
小分子PEG
ADC抗体偶联
蛋白交联剂
点击化学
糖化学
常规糖
糖偶联产品
核苷核糖
定制糖
大环化合物
酞菁
卟啉
大环配体
环糊精
冠醚
氨基酸多肽
常规氨基酸
目录多肽
药物多肽
PNA(肽核酸)
有机金属试剂
有机磷
有机钛
有机铋
有机锡
有机汞
有机锗
有机硼
有机锂
有机氟
有机硅
树脂Resin
常规树脂
功能化树脂
功能性化合物
配体
单体
功能中间体
生命科学
细胞生物学
细胞产品
常规细胞
细胞膜
外泌体
感受态细胞
质粒
生物芯片
细胞分选
微球和磁珠
琼脂糖珠
琼脂糖珠填料
细胞分选试剂盒
蛋白与酶
酶及辅酶
常规酶试剂
酶底物
蛋白与血清
重组蛋白
细胞因子
血清
活性蛋白
凝集素
泛素Ubiquitin
泛素
泛素试剂
Elisa试剂盒
动物Elisa试剂盒
特殊Elisa试剂盒
检测Elisa试剂盒
人Elisa试剂盒
其他Elisa试剂盒
分析科学
分析试剂
色谱柱及填料
色谱柱及填料
鲎试剂
担体
标准品
普通标准品
材料标准品
化学标准品
特色标准品
药物标准品
耗材设备
细胞培养耗材
细胞培养
细胞培养瓶
定制产品
功能性材料定制
无机纳米材料
纳米金定制
磁性纳米颗粒定制
二氧化硅定制
复合纳米定制
石墨烯定制
碳纳米管定制
无机功能化材料
MAX相陶瓷材料
黑磷材料BP定制
钙钛矿材料定制
金属硫化物
二维纳米材料
有机金属骨架定制
铋基材料定制
无机发光材料
量子点定制
上转换纳米发光颗粒定制
纳米金簇定制
无机实验外包
实验外包项目
无机检测外包项目
有机化学类定制
高分子材料定制
PEG相关定制
功能化聚合物定制
小分子材料定制
偶氮苯定制
特殊小分子定制
有机光电定制
卟啉酞菁定制
糖化学定制
光敏剂定制
大环类化合物定制
前体药物定制
生物化学类定制
聚集诱导发光定制
定制
纳米靶向材料定制
蛋白偶联和修饰
多肽定制
纳米制剂定制
脂质体定制
纳米载体定制
有机实验外包
有机实验外包项目
有机检测外包项目
生物类定制
细胞生物学定制
细胞膜仿生定制
生物学实验外包
生物实验外包项目
生物检测外包项目
宣传资料
资讯信息
产品
文章
功能化学
生命科学
分析科学
耗材设备
定制产品
宣传资料
资讯信息
您当前所在位置:
首页
>
资讯信息
>
科研动态
产品分类
热销试剂
新品上市
试剂课堂
科研动态
学术前沿
库存产品
高长径比的二维MXene膜分离抗生素溶液
发布时间:2020-09-03     作者:harry   分享到:
由于对生态系统和人类健康潜在的危害,自然环境和医药废水中的抗生素治理越来越受到世界各地关注。相关研究表明含量低至ppm级(百万分之一)甚至ppb级(十亿分之一)的抗生素都能对环境中的生态系统造成灾难性的后果,带来诸如抗药性的超级病菌。并且某些抗生素对自然水体里的水生生物具有很强的毒性。许多国家都对含抗生素的污水制定严格的排放标准。因此发展**的分离抗生素分离方法是大家急切期待的。当前抗生素污水处理主要采用一下方法:(1) 物理吸附,但是存在吸附容量和速率的平衡问题;(2)化学氧化,产生的副产物安全问题没有得到解决; (3) 聚合物纳滤膜,被认为是一个很有前景的分离技术。由于抗生素吸附导致的膜污染,严重影响膜的通量和长期操作稳定性,而且膜孔结构不规则需要牺牲通量来提高分离能力。
针对上述问题,
华南理工大学王海辉
教授与
德国汉诺威大学
Jürgen Caro
教授,报道了一种高长径比的二维Ti
3
C
2
T
x
MXene抗生素污水分离膜。相关论文近期发表于
Angewandte Chemie International Edition
(《
德国应用化学
》)。在这项研究中,采用高长径比的Ti
3
C
2
T
x
纳米片构筑了一种高度规整的层间通道的二维膜,在处理水溶性抗生素还是乙醇溶解的抗生素体系都能表现出很高的分离性能。在相近截留性能下与有机纳滤膜相比,该膜渗透通量提高一个数量级以上。高长径比纳米片构造的规整的亚纳米层间通道是性能提高的主要原因。无论面对水溶液还是乙醇溶液,该膜都表现出色的抗污染能力和操作稳定性,这应该膜表面的亲水官能团造成的。以上研究为设计**分离片层膜方面提供很好的指导意义。具体实验过程和相关数据如图所示。
图一,Ti
3
C
2
T
x
纳米片结构和形貌表征
图二,
Ti
3
C
2
T
x
片层膜结构表征
图三,Ti
3
C
2
T
x
膜处理水溶性和醇溶性抗生素体系的分离性能
图四,抗生素分离性能对比和MXene膜分离机理解释
该文章作者为在读博士生李中坤,共同通讯作者为华南理工大学的王海辉教授和魏嫣莹研究员、德国汉诺威大学Jürgen Caro教授。华南理工大学为该论文的单位。
文章题目:Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets
作者列表:Zhong-Kun Li, Yanying Wei*, Xue Gao, Li Ding, Zong Lu, Junjie Deng, Xianfeng Yang, Jürgen Caro* and Haihui Wang*
论文链接:
https://onlinelibrary.wiley.com/doi/10.1002/anie.202002935
资助来源:国家自然科学基金委,广东省自然科学基金委。
上一篇:含氟吡啶类医药中间体 定制合成
下一篇:MoO2-FeP异质结的界面设计用于制氢及生物质电氧化
库存查询
map